Login / Signup

Antimicrobial Efficacy of Un-Ionized Ammonia (NH 3 ) against Salmonella Typhimurium in Buffered Solutions with Variable pH, NH 3 Concentrations, and Urease-Producing Bacteria.

Alan GutierrezArie H HavelaarKeith R Schneider
Published in: Microbiology spectrum (2022)
The presence of Salmonella in poultry litter, when used as a biological soil amendment, presents a risk for the preharvest contamination of fresh produce. Poultry litter is rich in organic nitrogen, and previous studies have suggested that ammonia (NH 3 ) in poultry litter may affect the survival of Salmonella. Salmonella enterica serovar Typhimurium was inoculated into buffer solutions to characterize the pH dependency, minimum antimicrobial concentration, and efficacy of NH 3 production. In solutions with 0.4 M total ammonia nitrogen (TAN) at various pH levels (5, 7, 8, and 9), significant inactivation of Salmonella only occurred at pH 9. Salmonella was reduced by ∼8 log CFU/mL within 12 to 18 h at 0.09, 0.18, 0.26, and 0.35 M NH 3 . The minimum antimicrobial concentration tested was 0.04 M NH 3 , resulting in an ∼7 log CFU/mL reduction after 24 h. Solutions with urea (1% and 2%) and urease enzymes rapidly produced NH 3 , which significantly reduced Salmonella within 12 h. The urease-producing bacterium Corynebacterium urealyticum showed no antagonistic effects against Salmonella in solution. Conversely, with 1% urea added, C . urealyticum rapidly produced NH 3 in solution and significantly reduced Salmonella within 12 h. Salmonella inactivation data were nonlinear and fitted to Weibull models (Weibull, Weibull with tailing effects, and double Weibull) to describe their inactivation kinetics. These results suggest that high NH 3 levels in poultry litter may reduce the risk of contamination in this biological soil amendment. This study will guide future research on the influence of ammonia on the survival and persistence of Salmonella in poultry litter. IMPORTANCE Poultry litter is a widely used biological soil amendment in the production of fresh produce. However, poultry litter may contain human pathogens, such as Salmonella, which introduces the risk of preharvest produce contamination in agricultural fields. Ammonia in poultry litter, produced through bacterial degradation of urea, may be detrimental to the survival of Salmonella; however, these effects are not fully understood. This study utilized aqueous buffer solutions to demonstrate that the antimicrobial efficacy of ammonia against Salmonella is dependent on alkaline pH levels, where increasing concentrations of ammonia led to more rapid inactivation. Inactivation was also demonstrated in the presence of urea and urease or urease-producing Corynebacterium urealyticum. These findings suggest that high levels of ammonia in poultry litter may reduce the risk of contamination in biological soil amendments and will guide further studies on the survival and persistence of Salmonella in poultry litter.
Keyphrases
  • listeria monocytogenes
  • escherichia coli
  • room temperature
  • risk assessment
  • antimicrobial resistance
  • staphylococcus aureus
  • ionic liquid
  • climate change
  • perovskite solar cells
  • artificial intelligence