In this study, we developed an effective method for the large-scale synthesis of chenodeoxycholic acid (CDCA) from phocaecholic acid (PhCA). A high total yield of up to 72 % was obtained via five steps including methyl esterification, Ts-protection, bromination, reduction, and hydrolysis. The structures of the intermediates were confirmed by 1 H NMR (Nuclear Magnetic Resonance), 13 C NMR, HRMS (High Resolution Mass Spectrometry), and IR (Infrared Spectroscopy) spectroscopies. This method offers a new and practical approach to the synthesizing of CDCA.