Login / Signup

Protective Carbon Overlayers from 2,3-Naphthalenediol Pyrolysis on Mesoporous SiO₂ and Al₂O₃ Analyzed by Solid-State NMR.

Pu DuanXiaoyan CaoHien PhamAbhaya K DatyeKlaus Schmidt-Rohr
Published in: Materials (Basel, Switzerland) (2018)
Hydrothermally stable carbon overlayers can protect mesoporous oxides (SiO₂ and Al₂O₃) from hydrolysis during aqueous-phase catalysis. Overlayers made at 800 °C by pyrolysis of 2,3-naphthalenediol deposited out of acetone solution were analyzed by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Power absorption due to sample conductivity was prevented by diluting the sample in nonconductive and background-free tricalcium phosphate. While pyrolysis on SiO₂ produced a predominantly aromatic carbon film, at least 15% of nonaromatic carbon (sp³-hybridized C as well as C=O) was observed on γ-Al₂O₃. These species were not derived from residual solvent, according to spectra of the same material treated at 400 °C. The sp³-hybridized C exhibited weak couplings to hydrogen, short spin-lattice relaxation times, and unusually large shift anisotropies, which are characteristics of tetrahedral carbon with high concentrations of unpaired electrons. Moderate heat treatment at 400 °C on SiO₂ and Al₂O₃ resulted in yellow-brown and nearly black samples, respectively, but the darker color on Al₂O₃ did not correspond to more extensive carbonization. Aromatic carbon bonded to hydrogen remained predominant and the peaks of naphthalenediol were still recognizable; however, some of the chemical shifts differed by up to 5 ppm, indicating significant differences in local structure. On SiO₂, additional sharp peaks were detected and attributed to 1/3 of the 2,3-naphthalene molecules undergoing fast, nearly isotropic motions.
Keyphrases
  • solid state
  • magnetic resonance
  • sewage sludge
  • magnetic nanoparticles
  • ionic liquid
  • computed tomography
  • gold nanoparticles
  • density functional theory
  • single molecule
  • replacement therapy
  • newly diagnosed