Login / Signup

Designed Synthesis of a 2D Porphyrin-Based sp2 Carbon-Conjugated Covalent Organic Framework for Heterogeneous Photocatalysis.

Rufan ChenJi-Long ShiYuan MaGuiqing LinXianjun LangCheng Wang
Published in: Angewandte Chemie (International ed. in English) (2019)
The construction of stable covalent organic frameworks (COFs) for various applications is highly desirable. Herein, we report the synthesis of a novel two-dimensional (2D) porphyrin-based sp2 carbon-conjugated COF (Por-sp2 c-COF), which adopts an eclipsed AA stacking structure with a Brunauer-Emmett-Teller surface area of 689 m2  g-1 . Owing to the C=C linkages, Por-sp2 c-COF shows a high chemical stability under various conditions, even under harsh conditions such as 9 m HCl and 9 m NaOH solutions. Interestingly, Por-sp2 c-COF can be used as a metal-free heterogeneous photocatalyst for the visible-light-induced aerobic oxidation of amines to imines. More importantly, in comparison to imine-linked Por-COF, the inherent structure of Por-sp2 c-COF equips it with several advantages as a photocatalyst, including reusability and high photocatalytic performance. This clearly demonstrates that sp2 carbon-linked 2D COFs can provide an interesting platform for heterogeneous photocatalysis.
Keyphrases
  • visible light
  • photodynamic therapy
  • nitric oxide
  • gold nanoparticles
  • hydrogen peroxide
  • quantum dots
  • clinical evaluation