Novel inhibitors with sulfamethazine backbone: synthesis and biological study of multi-target cholinesterases and α-glucosidase inhibitors.
Cüneyt TürkeşSuleyman AkocakMesut IşıkNebih LolakParham TaslimiMustafa Durgunİlhami GulçinYakup BudakŞükrü BeydemirPublished in: Journal of biomolecular structure & dynamics (2021)
The underlying cause of many metabolic diseases is abnormal changes in enzyme activity in metabolism. Inhibition of metabolic enzymes such as cholinesterases (ChEs; acetylcholinesterase, AChE and butyrylcholinesterase, BChE) and α-glucosidase (α-GLY) is one of the accepted approaches in the treatment of Alzheimer's disease (AD) and diabetes mellitus (DM). Here we reported an investigation of a new series of novel ureido-substituted derivatives with sulfamethazine backbone (2a-f) for the inhibition of AChE, BChE, and α-GLY. All the derivatives demonstrated activity in nanomolar levels as AChE, BChE, and α-GLY inhibitors with KI values in the range of 56.07-204.95 nM, 38.05-147.04 nM, and 12.80-79.22 nM, respectively. Among the many strong N-(4,6-dimethylpyrimidin-2-yl)-4-(3-substitutedphenylureido) benzenesulfonamide derivatives (2a-f) detected against ChEs, compound 2c, the 4-fluorophenylureido derivative, demonstrated the most potent inhibition profile towards AChE and BChE. A comprehensive ligand/receptor interaction prediction was performed in silico for the three metabolic enzymes providing molecular docking investigation using Glide XP, MM-GBSA, and ADME-Tox modules. The present research reinforces the rationale behind utilizing inhibitors with sulfamethazine backbone as innovative anticholinergic and antidiabetic agents with a new mechanism of action, submitting propositions for the rational design and synthesis of novel strong inhibitors targeting ChEs and α-GLY.Communicated by Ramaswamy H. Sarma.