Login / Signup

Shift of leading pacemaker site during reflex vagal stimulation and altered electrical source-to-sink balance.

Jesse L AshtonMark L TrewIan J LeGriceDavid J PatersonJulian F R PatonAnne M GillisBruce H Smaill
Published in: The Journal of physiology (2019)
Reflex vagal activity causes abrupt heart rate slowing with concomitant caudal shifts of the leading pacemaker (LP) site within the sinoatrial node (SAN). However, neither the mechanisms responsible nor their dynamics have been investigated fully. Therefore, the objective of this study was to elucidate the mechanisms driving cholinergic LP shift. Optical maps of right atrial activation were acquired in a rat working heart-brainstem preparation during baroreflex and chemoreflex stimulation or with carbachol. All methods of stimulation triggered shifts in LP site from the central SAN to caudal pacemaker regions, which were positive for HCN4 and received uniform cholinergic innervation. During baroreflex onset, the capacity of the central region to drive activation declined with a decrease in amplitude and gradient of optical action potentials (OAPs) in the surrounding myocardium. Accompanying this decline, there was altered entrainment in the caudal SAN as shown by decreased conduction velocity, OAP amplitude, gradient and activation time. Atropine abolished these responses. Chemoreflex stimulation produced similar effects but central capacity to drive activation was preserved before the LP shift. In contrast, carbachol produced a prolonged period of reduced capacity to drive and altered entrainment. Previous studies suggest LP shift is a rate-dependent phenomenon whereby acetylcholine slows central pacemaker rate disproportionately, enabling caudal cells that are less acetylcholine sensitive to assume control. Our findings indicate that cholinergic LP shifts are also determined by altered electrical source-to-sink balance in the SAN. We conclude that the LP region is defined by both rate and capacity to drive atrial activation.
Keyphrases