Login / Signup

Chemically enhanced primary treatment of dairy wastewater using chitosan obtained from shrimp wastes: optimization using a Doehlert matrix design.

Gustavo Lopes MunizAlisson Carraro BorgesTeresa Cristina Fonseca da SilvaRafael Oliveira BatistaSimone Ramos de Castro
Published in: Environmental technology (2020)
Dairy operations generate large volumes of polluted wastewater that require treatment prior to discharge. Chemically enhanced primary treatment (CEPT) is a widely utilized wastewater treatment strategy; but it requires the use of non-biodegradable coagulants that can lead to toxic-byproducts. In this study, chitin from shrimp shell waste is extracted and converted into chitosan. Chitosan was demonstrated to be a natural, low-cost alternative coagulant compatible with the CEPT. Following treatment, dissolved air flotation allowed for the removal of turbidity, COD, and UV254 from the synthetic dairy effluent (SDE). Doehlert matrix was used to optimize the chitosan dosage and pH of the CEPT; as well as to model the process. The mechanisms behind the coagulation-flocculation were revealed using zeta potential analysis. FTIR spectroscopy was utilized to confirm the functional groups present on the chitosan. Chitosan with a degree of deacetylation equal to 81% was obtained. A chitosan dose of 73.34 mg/L at pH 5.00 was found to be optimal for the removal of pollutants. Removals of COD, turbidity and UV254 were 77.5%, 97.6%, and 88.8%, respectively. The amount of dry sludge generated to treat 1 m³ of SDE was 0.041 kg. Coagulation-flocculation mechanisms involved in chitosan-mediated treatment of SDE involve the neutralization of electrostatic charges carried on the amine groups present in cationic chitosan at pH 5.00. Doehlert matrix proved to be a useful tool in optimizing parameters throughout the coagulation-flocculation process. Chitosan from shrimp waste is a low-cost, eco-friendly coagulant alternative for the removal pollutants from dairy effluent using the CEPT.
Keyphrases
  • drug delivery
  • wastewater treatment
  • low cost
  • wound healing
  • hyaluronic acid
  • heavy metals
  • microbial community
  • anaerobic digestion
  • risk assessment
  • drinking water
  • single molecule
  • molecular dynamics simulations