Rational Design of Antifouling Polymeric Nanocomposite for Sustainable Fluoride Removal from NOM-Rich Water.
Xiaolin ZhangLu ZhangZhixian LiZhao JiangQi ZhengBin LinBingcai PanPublished in: Environmental science & technology (2017)
The presence of natural organic matter (NOM) exerts adverse effects on adsorptive removal of various pollutants including fluoride from water. Herein, we designed a novel nanocomposite adsorbent for preferable and sustainable defluoridation from NOM-rich water. The nanocomposite (HZO@HCA) is obtained by encapsulating hydrous zirconium oxide nanoparticles (HZO NPs) inside hyper-cross-linked polystyrene anion exchanger (HCA) binding tertiary amine groups. Another commercially available nanocomposite HZO@D201, with the host of a cross-linked polystyrene anion exchanger (D201) binding ammonium groups, was involved for comparison. HZO@HCA features with abundant micropores instead of meso-/macropores of HZO@D201, resulting in the inaccessible sites for NOM due to the size exclusion. Also, the tertiary amine groups of HCA favor an efficient desorption of the slightly loaded NOM from HZO@HCA. As expected, Sigma-Aldrich humic acid even at 20 mg of DOC/L did not exert any observable effect on fluoride sequestration by HZO@HCA, whereas a significant inhibition was observed for HZO@D201. Cyclic adsorption runs further verified the superior reusability of HZO@HCA for defluoridation from NOM-rich water. In addition, the HZO@HCA column could generate ∼80 bed volume (BV) effluent from a synthetic fluoride-containing groundwater to meet the drinking water standard (<1.5 mg F/L), whereas HCA and HZO@D201 columns could only generate <5 and ∼40 BV effluents, respectively. This study is believed to shed new light on how to rationally design antifouling nanocomposites for water remediation.
Keyphrases
- drinking water
- reduced graphene oxide
- health risk
- aqueous solution
- health risk assessment
- solid phase extraction
- drug delivery
- oxide nanoparticles
- quantum dots
- lipopolysaccharide induced
- wastewater treatment
- organic matter
- emergency department
- lps induced
- mass spectrometry
- binding protein
- highly efficient
- high resolution
- risk assessment
- human health
- electronic health record