Conditioning Film and Early Biofilm Succession on Plastic Surfaces.
Christoph D RummelOliver Jens LechtenfeldRené KalliesAnnegret BenkePeter HerzsprungRobby RynekStephan WagnerAnnegret PotthoffAnnika JahnkeMechthild Schmitt-JansenPublished in: Environmental science & technology (2021)
In the context of environmental plastic pollution, it is still under debate if and how the "plastisphere", a plastic-specific microbial community, emerges. In this study, we tested the hypothesis that the first conditioning film of dissolved organic matter (DOM) sorbs selectively to polymer substrates and that microbial attachment is governed in a substrate-dependent manner. We investigated the adsorption of stream water-derived DOM to polyethylene terephthalate (PET), polystyrene (PS), and glass (as control) including UV-weathered surfaces by Fourier-transform ion cyclotron mass spectrometry. Generally, the saturated, high-molecular mass and thus more hydrophobic fraction of the original stream water DOM preferentially adsorbed to the substrates. The UV-weathered polymers adsorbed more polar, hydrophilic OM as compared to the dark controls. The amplicon sequencing data of the initial microbial colonization process revealed a tendency of substrate specificity for biofilm attachment after 24 h and a clear convergence of the communities after 72 h of incubation. Conclusively, the adsorbed OM layer developed depending on the materials' surface properties and increased the water contact angles, indicating higher surface hydrophobicity as compared to pristine surfaces. This study improves our understanding of molecular and biological interactions at the polymer/water interface that are relevant to understand the ecological impact of plastic pollution on a community level.
Keyphrases
- microbial community
- biofilm formation
- mass spectrometry
- human health
- pseudomonas aeruginosa
- staphylococcus aureus
- risk assessment
- heavy metals
- liquid chromatography
- antibiotic resistance genes
- particulate matter
- candida albicans
- healthcare
- computed tomography
- high resolution
- room temperature
- organic matter
- health risk assessment
- big data
- pet ct
- gold nanoparticles
- positron emission tomography
- single molecule
- air pollution