IRONing out stress problems in crops: a homeostatic perspective.
Tirthankar BandyopadhyayManoj PrasadPublished in: Physiologia plantarum (2020)
Iron (Fe) is essential for plant growth and therefore plays a key role in influencing crop productivity worldwide. Apart from its central role in chlorophyll biosynthesis and oxidative phosphorylation (electron transfer), it is an important constituent of many enzymes involved in primary metabolism. Fe has different accessibilities to the roots in the rhizosphere depending upon whether it is ferrous (soluble) or ferric (insoluble) oxidation stages, which in turn, determine two kinds of Fe uptake strategies employed by the plants. The reduction strategy is exclusively found in non-graminaceous plants wherein the ferrous Fe2+ is absorbed and translocated from the soil through specialized transporters. In contrast, the chelation strategy (widespread in graminaceous plants) relies on the formation of Fe (III)-chelate complex as the necessary requirement of Fe uptake. Once inside the cell, Fe is translocated, compartmentalized and stored through a common set of physiological processes involving many transporters and enzymes whose functions are controlled by underlying genetic components, so that a fine balance of Fe homeostasis is maintained. Recently, molecular and mechanistic aspects of the process involving the role of transcription factors, signaling components, and cis-acting elements have been obtained, which has enabled a much better understanding of its ecophysiology. This mini-review summarizes recent developments in our understanding of Fe transport in higher plants with particular emphasis on crops in the context of major agronomically important abiotic stresses. It also highlights outstanding questions on the regulation of Fe homeostasis and lists potentially useful genes/regulatory pathways that may be useful for subsequent crop improvement under the stresses discussed through either conventional or transgenic approaches.