Diagnostic Accuracy of HemotypeSC as a Point-of-Care Testing Device for Sickle Cell Disease: Findings from a Southwestern State in Nigeria and Implications for Patient Care in Resource-Poor Settings of sub-Saharan Africa.
Oladele Simeon OlatunyaDulcinea M AlbuquerqueAdeniyi F FagbamigbeOpeyemi A FaboyaAyotunde E AjibolaOluwatoyin A BabalolaAdewale O AdebisiAdeyinka G FalusiAdekunle AdekileFernando F CostaPublished in: Global pediatric health (2021)
This study aimed to determine the performance of a rapid, point-of-care testing device (HemotypeSC)™ for diagnosing sickle cell disease (SCD) relative to 2 commonly-used methods compared to DNA polymerase chain reaction (PCR) as the reference standard. The diagnostic performance of (HemotypeSC)™ in diagnosing SCD and determining various other Hb genotypes relative to high performance liquid chromatography (HPLC) and cellulose acetate Hb electrophoresis in alkaline buffer (CAE) was investigated among 156 participants aged 4 to 23 years in Ekiti, Southwest Nigeria. PCR was considered as the reference method/gold standard. The sensitivity and specificity for SS, SC, AS, AC, and AA genotypes by HemotypeSC and HPLC when compared with PCR, were each 100%. Similarly, their positive and negative predictive values were each 100%. However, sensitivity and specificity for identifying these Hb genotypes by CAE were 100, 100, 96.5, 0, 99.2%, and 99, 100, 92.9, 0, 91.7%. Also, CAE did not identify any of the 2 HbAC individuals that were correctly identified by PCR and both HemotypeSC, and HPLC, thus representing 100% HbAC misdiagnosis. In conclusion, this study shows that HemotypeSC has perfect concordance with PCR and 100% accuracy in diagnosing SCD in the population tested. Its ease of use, accuracy and other attributes make it suitable for use in sub-Saharan Africa for rapid determination of Hb genotypes.