Login / Signup

Comparison of Fucose-Specific Lectins to Improve Quantitative AFP-L3 Assay for Diagnosing Hepatocellular Carcinoma Using Mass Spectrometry.

Ji Hyeon LeeInjoon YeoYoseop KimDongyoon ShinJaenyeon KimYeongshin KimYoung-Suk LimYoungsoo Kim
Published in: Journal of proteome research (2022)
Glycoproteins have many important biological functions. In particular, aberrant glycosylation has been observed in various cancers, such as liver cancer. A well-known glycoprotein biomarker is α-fetoprotein (AFP), a surveillance biomarker for hepatocellular carcinoma (HCC) that contains a glycosylation site at asparagine 251. The low diagnostic sensitivity of AFP led researchers to focus on AFP-L3, which has the same sequence as conventional AFP but contains a fucosylated glycan. AFP-L3 has high affinity for Lens culinaris agglutinin (LCA) lectin, prompting many groups to use it for detecting AFP-L3. However, a few studies have identified more effective lectins for fractionating AFP-L3. In this study, we compared the amounts of enriched AFP-L3 with five fucose-specific lectins─LCA, Lotus tetragonolobus lectin (LTL), Ulex europaeus agglutinin I (UEA I), Aleuria aurantia lectin (AAL), and Aspergillus oryzae lectin (AOL)─to identify better lectins and improve HCC diagnostic assays using mass spectrometry (MS). Our results indicate that LTL was the most effective lectin for capturing AFP-L3 species, yielding approximately 3-fold more AFP-L3 than LCA from the same pool of HCC serum samples. Thus, we recommend the use of LTL for AFP-L3 assays, given its potential to improve the diagnostic sensitivity in patients having limited results by conventional LCA assay. The MS data have been deposited to the PeptideAtlas (PASS01752).
Keyphrases