B cells constitute a major component of infiltrating immune cells in colorectal cancer (CRC). However, the characteristics of B cells and their clinical significance remain unclear. In this study, using single-cell RNA sequencing and multicolour immunofluorescence staining experiments, we identified five distinct subtypes of B cells with their marker genes, distribution patterns and functional properties in the CRC tumour microenvironment. Meanwhile, we found a higher proportion of IgG plasma cells in tumour sites than that in adjacent normal mucosal tissues. In addition, the CXCL13-producing CD8 + T cells in the tumour tissues could promote the formation of tertiary lymphoid structure (TLS) B cells, and the CCL28-CCR10 axis is pivotal for IgG plasma cell migration from the periphery of TLSs to the tumour stroma. Finally, we identified four distinct colon immune classes (CICs: A-D) and found that CD20 + B cells within TLSs were enriched in one immune-inflamed or hot tumour group (CIC D). This B cell-rich group, which was characterized by strong antigen presentation, IgG plasma cells accumulation, microsatellite instability-high (MSI-H) and high tumour mutation burden (TMB-H), as well as immunosuppressive property in particular, might become a potential predictive biomarker for future immunotherapy. Additionally, in an immunotherapy cohort, patients with the enrichment of B cells and TLSs were demonstrated to obtain significant therapeutic advantages. Together, our findings provide the detailed landscape of infiltrating B cells and their potential clinical significance in CRC.