Mg(II) and Ca(II) Microsolvation by Ammonia: Born-Oppenheimer Molecular Dynamics Studies.
C I León-PimentelH Saint-MartinAlejandro Ramirez-SolisPublished in: The journal of physical chemistry. A (2021)
We report the structural and energetic features of the Mg2+ and Ca2+ cations in ammonia microsolvation environments. Born-Oppenhemier molecular dynamics studies are carried out for [Mg(NH3)n]2+ and [Ca(NH3)n]2+ clusters with n = 2, 3, 4, 6, 8, 20, and 27 at 300 K based on hybrid density functional theory calculations. We determine binding energies per ammonia molecule and the metal cation solvation patterns as a function of the number of molecules. The general trend for Mg2+ is that the Mg-N distances increase as a function of n until the first solvation shell is populated by six ammonia molecules, and then the distances slightly decrease while CN = 6 does not change. For Ca2+, the first solvation shell at room temperature is populated by eight ammonia molecules for clusters with more than one solvation shell, leading to a different structure from that of [Ca(NH3)6]2+ hexamine. The evaporation of NH3 molecules was found at 300 K only for Mg2+ clusters with n ≥ 10; this was not the case for Ca2+ clusters. Vibrational spectra are obtained for all of the clusters, and the evolution of the main features is discussed. EXAFS spectra are also presented for the [Mg(NH3)27(NH3)27]2+ and [Ca(NH3)27]2+ clusters, which yield valuable data to be compared with experimental data in the liquid phase, as previously done for the aqueous solvation of these dications.