Exendin-4 overcomes cytokine-induced decreases in gap junction coupling via protein kinase A and Epac2 in mouse and human islets.
Nikki L FarnsworthRachelle WalterRobert A PiscopioWolfgang E SchleicherRichard K P BenningerPublished in: The Journal of physiology (2018)
The pancreatic islets of Langerhans maintain glucose homeostasis. Insulin secretion from islet β-cells is driven by glucose metabolism, depolarization of the cell membrane and an influx of calcium, which initiates the release of insulin. Gap junctions composed of connexin36 (Cx36) electrically couple β-cells, regulating calcium signalling and insulin secretion dynamics. Cx36 coupling is decreased in pre-diabetic mice, suggesting a role for altered coupling in diabetes. Our previous work has shown that pro-inflammatory cytokines decrease Cx36 coupling and that compounds which increase cAMP can increase Cx36 coupling. The goal of this study was to determine if exendin-4, which increases cAMP, can protect against cytokine-induced decreases in Cx36 coupling and altered islet function. In both mouse and human islets, exendin-4 protected against cytokine-induced decreases in coupling and preserved glucose-stimulated calcium signalling. Exendin-4 also protected against protein kinase Cδ-mediated decreases in Cx36 coupling. Exendin-4 preserved coupling in mouse islets by preserving Cx36 levels on the plasma membrane. Exendin-4 regulated Cx36 coupling via both protein kinase A (PKA)- and Epac2-mediated mechanisms in cytokine-treated islets. In mouse islets, modulating Epac2 had a greater impact in mediating Cx36 coupling, while in human islets modulating PKA had a greater impact on Cx36 coupling. Our data indicate that PKA regulates Cx36 coupling through a fast mechanism, such as channel gating, while Epac2 regulates slower mechanisms of regulation, such as Cx36 turnover in the membrane. Increases in Cx36 coupling with exendin-4 may protect against cytokine-mediated β-cell dysfunction to insulin secretion dynamics during the development of diabetes.
Keyphrases
- room temperature
- protein kinase
- endothelial cells
- type diabetes
- cardiovascular disease
- induced apoptosis
- high glucose
- signaling pathway
- stem cells
- postmenopausal women
- metabolic syndrome
- endoplasmic reticulum stress
- induced pluripotent stem cells
- cell therapy
- deep learning
- cell death
- weight loss
- electronic health record