A Spectrally Tunable Dielectric Subwavelength Grating based Broadband Planar Light Concentrator.
Ameen ElikkottilMohammed H TahersimaM V N Surendra GuptaRishi MaitiVolker J SorgerBala PesalaPublished in: Scientific reports (2019)
Energy consumption of buildings is increasing at a rapid pace due to urbanization, while net-zero energy buildings offer a green and sustainable solution. However, limited rooftop availability on multi-story buildings poses a challenge for large-scale integration of photovoltaics. Conventional silicon solar panels block visible light making them unfeasible to cover all the surfaces of a building. Here, we demonstrate a novel dielectric grating based planar light concentrator. We integrate this functional device onto a window glass transmitting visible light while simultaneously guiding near infrared (NIR) portion of sunlight to edges of the glass window where it is converted to electricity by a photovoltaic cell. Gratings are designed to guide NIR region and realize polarization independent performance. Experimentally, we observe 0.72% optical guiding efficiency in the NIR region (700-1000 nm), transmitting majority of the visible portion for natural room lighting. Integrating solar cell at the window edge, we find an electrical conversion efficiency of about 0.65% of NIR light with a 25 mm2 prototype. Major losses are coupling and guiding losses arising from non-uniformity in fabrication over a large area. Such a functional window combining energy generation, natural room lighting and heat load reduction could mitigate urban heat island effect in modern cities.