A fast and sensitive size-exclusion chromatography method for plasma extracellular vesicle proteomic analysis.
Ivo Díaz LudovicoSamantha M PowellGina ManyLisa BramerSoumyadeep SarkarKelly StrattonTao LiuTujin ShiWei-Jun QianKristin E Burnum-JohnsonJohn T MelchiorErnesto S NakayasuPublished in: Proteomics (2024)
Extracellular vesicles (EVs) carry diverse biomolecules derived from their parental cells, making their components excellent biomarker candidates. However, purifying EVs is a major hurdle in biomarker discovery since current methods require large amounts of samples, are time-consuming and typically have poor reproducibility. Here we describe a simple, fast, and sensitive EV fractionation method using size exclusion chromatography (SEC) on a fast protein liquid chromatography (FPLC) system. Our method uses a Superose 6 Increase 5/150, which has a bed volume of 2.9 mL. The FPLC system and small column size enable reproducible separation of only 50 µL of human plasma in 15 min. To demonstrate the utility of our method, we used longitudinal samples from a group of individuals who underwent intense exercise. A total of 838 proteins were identified, of which, 261 were previously characterized as EV proteins, including classical markers, such as cluster of differentiation (CD)9 and CD81. Quantitative analysis showed low technical variability with correlation coefficients greater than 0.9 between replicates. The analysis captured differences in relevant EV proteins involved in response to physical activity. Our method enables fast and sensitive fractionation of plasma EVs with low variability, which will facilitate biomarker studies in large clinical cohorts.