Login / Signup

Water-Tolerant DUT-Series Metal-Organic Frameworks: A Theoretical-Experimental Study for the Chemical Fixation of CO2 and Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone.

Jintu Francis KurisingalYadagiri RachuriAthulya S PalakkalRenjith S PillaiYunjang GuYoungson ChoeDae-Won Park
Published in: ACS applied materials & interfaces (2019)
A series of highly thermally and hydrolytically stable porous solids with intriguing properties of zirconium- and hafnium-based metal-organic frameworks (MOFs) [Dresden University of Technology (DUT) series] was synthesized. The DUT MOFs were found to be effective catalysts for both epoxide-CO2 cycloaddition reactions and the catalytic transfer hydrogenation (CTH) of ethyl levulinate (EL). In particular, 12-connected DUT-52(Zr) showed higher catalytic activity than eight- and six-connected catalysts in the synthesis of cyclic carbonates as well as in the production of γ-valerolactone (GVL). The secondary building unit connectivity, coexistence of a moderate number of acidic and basic sites, Brunauer-Emmett-Teller surface area, and combined effects of the pores of the MOFs seem to influence the catalytic activity. The reaction mechanism for the DUT-52(Zr)-mediated cycloaddition reaction of CO2 and the CTH reactions were investigated in detail by using periodic density functional theory calculations. To the best of our knowledge, this is the first detailed computational study for the formation of GVL from EL by using MOF as the catalyst. In addition, grand canonical Monte Carlo simulations predicted the strong interaction of CO2 molecules with the DUT-52(Zr) framework. Remarkably, the DUT-series catalysts possess extraordinary tolerance toward water. Further, DUT-52(Zr) is recyclable and is an efficient catalyst for cycloaddition and CTH reactions for at least five uses without obvious reductions in the activity or structural integrity.
Keyphrases