Chemical Composition and Water Permeability of Fruit and Leaf Cuticles of Olea europaea L.
Hua HuangMarkus BurghardtAnn-Christin SchusterJana LeideIsabel LaraMarkus RiedererPublished in: Journal of agricultural and food chemistry (2017)
The plant cuticle, protecting against uncontrolled water loss, covers olive (Olea europaea) fruits and leaves. The present study describes the organ-specific chemical composition of the cuticular waxes and the cutin and compares three developmental stages of fruits (green, turning, and black) with the leaf surface. Numerous organ-specific differences, such as the total coverage of cutin monomeric components (1034.4 μg cm-2 and 630.5 μg cm-2) and the cuticular waxes (201.6 μg cm-2 and 320.4 μg cm-2) among all three fruit stages and leaves, respectively, were detected. Water permeability as the main cuticular function was 5-fold lower in adaxial leaf cuticles (2.1 × 10-5 m s-1) in comparison to all three fruit stages (9.5 × 10-5 m s-1). The three fruit developmental stages have the same cuticular water permeability. It is hypothesized that a higher weighted average chain length of the acyclic cuticular components leads to a considerably lower permeability of the leaf as compared to the fruit cuticle.