Building a Simplistic Automatic Extruder: Instrument Development Opportunities for the Laboratory.
Stefanie KlischDylan GilbertEmma BreauxAliyah DalierSudipta GuptaBruno JakobiGerald J SchneiderPublished in: Journal of chemical education (2024)
This work presents an automatic extruder as a research experience for undergraduate students. The system offers a user-friendly approach to preparing vesicles, such as liposomes or polymersomes, with a defined size and polydispersity-properties crucial for research in biology and macromolecules. It comprises two syringe pumps connected by a membrane filter. The setup is controlled by software. Compared to manual extrusion, this automated system provides advantages, such as precisely controlled variables. The project describes a tool to enhance undergraduate learning in science and engineering laboratories. Building an automatic extruder serves as a simplified model of a complex industrial process. It offers a clear advantage: automating a well-understood manual extrusion process. To make this project accessible, it is broken down into three manageable tasks: software development, hardware assembly, and testing procedures. This breakdown describes the software created, the hardware components used, and the testing procedures conducted for this project. All project data, including software code, testing data, and procedures, are freely available online. This allows undergraduate students to not only begin their own projects but also contribute to this educational instrument's ongoing development.