Login / Signup

Nest-Like MnO2 Nanowire/Hierarchical Porous Carbon Composite for High-Performance Supercapacitor from Oily Sludge.

Xiaoyu LiDong HanZhiqiang GongZhenbo Wang
Published in: Nanomaterials (Basel, Switzerland) (2021)
In the aim to go beyond the performance tradeoffs of classic electric double-layer capacitance and pseudo-capacitance, composites made out of carbon and pseudo-capacitive materials have been a hot-spot strategy. In this paper, a nest-like MnO2 nanowire/hierarchical porous carbon (HPC) composite (MPC) was successfully fabricated by a controllable in situ chemical co-precipitation method from oily sludge waste. Due to the advantages of high surface area and fast charge transfer for HPC as well as the large pseudo-capacitance for MnO2 nanowires, the as-prepared MPC has good capacitance performance with a specific capacitance of 437.9 F g-1 at 0.5 A g-1, favorable rate capability of 79.2% retention at 20 A g-1, and long-term cycle stability of 78.5% retention after 5000 cycles at 5 A g-1. Meanwhile, an asymmetric supercapacitor (ASC) was assembled using MPC as the cathode while HPC was the anode, which exhibits a superior energy density of 58.67 W h kg-1 at the corresponding power density of 498.8 W kg-1. These extraordinary electrochemical properties highlight the prospect of our waste-derived composites electrode material to replace conventional electrode materials for a high-performance supercapacitor.
Keyphrases