Login / Signup

Using genetic comparisons of populations from Arizona, Mexico, and Texas to investigate fall armyworm migration in the American southwest.

Rodney N NagoshiAshley E TessnowYves CarrièreJeff BradshawKyle HarringtonGregory A SwordRobert L Meagher
Published in: PloS one (2023)
Fall armyworm (FAW) is a global agricultural pest, causing substantial economic losses in corn and many other crops. Complicating efforts to control this pest is its capacity for long distance flights, which has been described in greatest detail for the central and eastern sections of the United States. FAW infestations are also routinely found in agricultural areas in southern Arizona, which lie beyond the western limits of the mapped migratory pathways. Climate suitability analysis found that the affected Arizona locations cannot support permanent FAW populations, indicating that these FAW most likely arise from annual migrations. A better understanding of this migration would provide insights into how large moth populations can move across desert habitats as well as the degree of gene flow occurring between FAW populations across the North American continent. In this study the Arizona populations were genetically characterized and compared to a selection of permanent and migratory FAW from multiple sites in the United States and Mexico. The results are consistent with migratory contributions from permanent populations in the states of Texas (United States) and Sinaloa (Mexico), while also providing evidence of significant barriers to gene flow between populations within Mexico. An unexpected finding was that two genetically distinct FAW subpopulations known as "host strains" have a differential distribution in the southwest that may indicate significant differences in their migration behavior in this region. These findings indicate that the combination of mitochondrial and Z-linked markers have advantages in comparing FAW populations that can complement and extend the findings from other methods.
Keyphrases
  • genetic diversity
  • escherichia coli
  • heavy metals
  • south africa
  • dna methylation
  • human health