Biotin-Modified Polylactic- co-Glycolic Acid Nanoparticles with Improved Antiproliferative Activity of 15,16-Dihydrotanshinone I in Human Cervical Cancer Cells.
Jingjing LuoXiaofeng MengJianyu SuHang MaWen WangLiming FangHuade ZhengYexia QinTianfeng ChenPublished in: Journal of agricultural and food chemistry (2018)
15,16-Dihydrotanshinone I (DI), a natural compound isolated from a traditional Asian functional food Salvia Miltiorrhiza Bunge, is known for its anticancer activity. However, poor solubility of DI limits its desirable anticancer application. Herein, polylactic- co-glycolic acid (PLGA) was functionalized with polyethylene glycol (PEG) and biotin to form copolymers PEG-PLGA (PPA) and biotin-PEG-PLGA (BPA). DI was encapsulated in copolymers PPA and BPA to obtain DI-PPA-NPs (NPs = nanoparticles) and DI-BPA-NPs, respectively. The particle size and its distribution, encapsulation efficiency, and in vitro releasing capacity of DI-BPA-NPs were characterized by biophysical methods. MTT assay was used to evaluate the antiproliferative activity of free DI, DI-PPA-NPs, and DI-BPA-NPs in human cervical cancer Hela cells. DI-BPA-NPs showed the highest cytotoxicity on Hela cells with an IC50 value of 4.55 ± 0.631 μM, while it was 8.20 ± 0.849 and 6.14 ± 0.312 μM for DI and DI-PPA-NPs in 72 h, respectively. The superior antiproliferative activity was supported by the fact that DI-BPA-NPs could be preferentially internalized by Hela cells, owing to their specific interaction between biotin and overexpressed biotin receptors. In addition, DI-BPA-NPs effectively inhibited Hela cell proliferation by inducing G2/M phase cycle arrest and decreasing the intracellular reactive oxygen species (ROS) level by 31.50 ± 2.29% in 5 min. In summary, DI-BPA-NPs shows improved antiproliferative activity against human cervical cancer as comparing with free DI, demonstrating its application potential in cancer therapy.
Keyphrases
- biofilm formation
- drug delivery
- cell proliferation
- induced apoptosis
- reactive oxygen species
- endothelial cells
- oxide nanoparticles
- staphylococcus aureus
- escherichia coli
- pseudomonas aeruginosa
- candida albicans
- cell death
- cystic fibrosis
- cell cycle
- signaling pathway
- endoplasmic reticulum stress
- quantum dots
- molecularly imprinted
- human health
- simultaneous determination