Login / Signup

Electrical and Recombination Properties of Polar Orthorhombic κ-Ga 2 O 3 Films Prepared by Halide Vapor Phase Epitaxy.

Eugene B YakimovAlexander Y PolyakovVladimir I NikolaevAlexei I PechnikovMikhail P ScheglovEugene E YakimovStephen J Pearton
Published in: Nanomaterials (Basel, Switzerland) (2023)
In this study, the structural and electrical properties of orthorhombic κ-Ga 2 O 3 films prepared using Halide Vapor Phase Epitaxy (HVPE) on AlN/Si and GaN/sapphire templates were studied. For κ-Ga 2 O 3 /AlN/Si structures, the formation of two-dimensional hole layers in the Ga 2 O 3 was studied and, based on theoretical calculations, was explained by the impact of the difference in the spontaneous polarizations of κ-Ga 2 O 3 and AlN. Structural studies indicated that in the thickest κ-Ga 2 O 3 /GaN/sapphire layer used, the formation of rotational nanodomains was suppressed. For thick (23 μm and 86 μm) κ-Ga 2 O 3 films grown on GaN/sapphire, the good rectifying characteristics of Ni Schottky diodes were observed. In addition, deep trap spectra and electron beam-induced current measurements were performed for the first time in this polytype. These experiments show that the uppermost 2 µm layer of the grown films contains a high density of rather deep electron traps near E c - 0.3 eV and E c - 0.7 eV, whose presence results in the relatively high series resistance of the structures. The diffusion length of the excess charge carriers was measured for the first time in κ-Ga 2 O 3 . The film with the greatest thickness of 86 μm was irradiated with protons and the carrier removal rate was about 10 cm -1 , which is considerably lower than that for β-Ga 2 O 3 .
Keyphrases
  • pet ct
  • room temperature
  • solar cells
  • high density
  • light emitting
  • dna damage
  • dna repair
  • molecular dynamics simulations
  • ionic liquid
  • density functional theory
  • gold nanoparticles
  • case control