Login / Signup

Chemically Robust and Bifunctional Co(II)-Framework for Trace Detection of Assorted Organo-toxins and Highly Cooperative Deacetalization-Knoevenagel Condensation with Pore-Fitting-Induced Size-Selectivity.

Nilanjan SealAthulya S PalakkalManpreet SinghRanadip GoswamiRenjith S PillaiSubhadip Neogi
Published in: ACS applied materials & interfaces (2021)
Acute detection of assorted classes of organo-toxins in a practical environment is an important sustainable agenda, whereas cooperative and recyclable catalysis can mitigate hazards by minimizing energy requirements and reducing waste generation. We constructed an acid-/base-stable Co(II)-framework with a unique network topology, wherein unidirectional porous channels are decorated by anionic [Co2(μ2-OH)(COO)4(H2O)3] secondary building units and neutral [CoN2(COO)2] nodes. An intense luminescent signature of the hydrolytically robust framework is harnessed for the selective, fast-responsive, and regenerable detection of two detrimental organo-aromatics, 4-aminophenol (4-AP) and 2,4,6-trinitrophenol (TNP). Alongside remarkable quenching, their nanomolar detection limits (4-AP: 99.5 nM; TNP: 67.2 nM) rank among the lowest reported values in water and corroborate their ultra-sensitivity. Density functional theory (DFT) calculations verify the electron-transfer route of sensing through portraying redistribution of energy levels of molecular orbitals in a three-dimensional network by each analyte and further envisages non-covalent host-guest interactions. Benefiting from the concurrent existence of an open-metal site and a triphenylamine-moiety-functionalized ligand, the activated framework acts as an outstandingly cooperative heterogeneous catalyst in deacetalization-Knoevenagel condensation under mild conditions. The acid-base dual catalysis is detailed for the first time from combined inputs of control experiments and DFT validations. To the best of tandem reaction, larger-sized substrate exhibits insignificant conversion, and certifies rarest pore-fitting induced size-selectivity.
Keyphrases