Preparation of silica microspheres with a broad pore size distribution and their use as the support for a coated cellulose derivative chiral stationary phase.
Mingxian HuangHongyan MaMengna NiuFei HuShige WangLulu LiChunguang LvPublished in: Journal of separation science (2018)
A templating strategy using crosslinked and functionalized polymeric beads to synthesize silica microspheres with a broad pore size distribution has been developed. The polymer/silica hybrid microspheres were prepared by utilizing the combination of a templating weak cation exchange resin, a structure-directing agent N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride, and a silica precursor tetraethyl orthosilicate. The silica microspheres were then obtained after calcinating the hybrid microspheres. The as-prepared materials were characterized by scanning electron microscopy, mercury intrusion porosimeter, and thermal gravimetric analysis. The results showed that the starting templating beads were about 5 μm in diameter and the formed silica microspheres were less than 3 μm with a pore size range of 10-150 nm, some pores were even extended to beyond 250 nm. It was demonstrated that cellulose tris(3,5-dimethylphenylcarbamate) was readily coated onto the surface of the as-synthesized silica microspheres without any additional surface pretreatment. The coated silica microspheres were uniformly dispersed even with high loading of the chiral stationary phase, which exhibited high resolution chiral separations in high-performance liquid chromatography.