Login / Signup

Abundant Sulfitobacter marine bacteria protect Emiliania huxleyi algae from pathogenic bacteria.

Roni BeiralasNoy OzerEinav Segev
Published in: ISME communications (2023)
Emiliania huxleyi is a unicellular micro-alga that forms massive oceanic blooms and plays key roles in global biogeochemical cycles. Mounting studies demonstrate various stimulatory and inhibitory influences that bacteria have on the E. huxleyi physiology. To investigate these algal-bacterial interactions, laboratory co-cultures have been established by us and by others. Owing to these co-cultures, various mechanisms of algal-bacterial interactions have been revealed, many involving bacterial pathogenicity towards algae. However, co-cultures represent a significantly simplified system, lacking the complexity of bacterial communities. In order to investigate bacterial pathogenicity within an ecologically relevant context, it becomes imperative to enhance the microbial complexity of co-culture setups. Phaeobacter inhibens bacteria are known pathogens that cause the death of E. huxleyi algae in laboratory co-culture systems. The bacteria depend on algal exudates for growth, but when algae senesce, bacteria switch to a pathogenic state and induce algal death. Here we investigate whether P. inhibens bacteria can induce algal death in the presence of a complex bacterial community. We show that an E. huxleyi-associated bacterial community protects the alga from the pathogen, although the pathogen occurs within the community. To study how the bacterial community regulates pathogenicity, we reduced the complex bacterial community to a five-member synthetic community (syncom). The syncom is comprised of a single algal host and five isolated bacterial species, which represent major bacterial groups that are naturally associated with E. huxleyi. We discovered that a single bacterial species in the reduced community, Sulfitobacter pontiacus, protects the alga from the pathogen. We further found that algal protection from P. inhibens pathogenicity is a shared trait among several Sulfitobacter species. Algal protection by bacteria might be a common phenomenon with ecological significance, which is overlooked in reduced co-culture systems.
Keyphrases