Polymerized Small Molecular Acceptor with Branched Side Chains for All Polymer Solar Cells with Efficiency over 16.7.
Yun LiJiali SongYicai DongHui JinJingming XinShijie WangYunhao CaiLang JiangWei MaZheng TangYanming SunPublished in: Advanced materials (Deerfield Beach, Fla.) (2022)
The power conversion efficiencies (PCEs) of small molecule acceptor (SMA)-based organic solar cells have already exceeded 18%. However, the development of polymer acceptors still lags far behind their SMA counterparts mainly due to the lack of efficient polymer acceptors. Herein, a series of polymer acceptors named PY-X (with X being the branched alkyl chain) are designed and synthesized by employing the same central core with the SMA L8-BO but with different branched alkyl chains on the pyrrole motif. It is found that the molecular packing of SMA-HD featuring 2-hexyldecyl side chain used in the synthesis of PY-HD is similar to L8-BO, in which the branched alkyl chains lead to condensed and high-order molecular assembly in SMA-HD molecules. When combined with PM6, PY-HD-based all polymer solar cell (all-PSC) exhibits a high PCE of 16.41%, representing the highest efficiency for the binary all-PSCs. Moreover, the side-chain modification on the pyrrole site position further improves the performance of the all-PSCs, and the PY-DT-based device delivers a new record high efficiency of 16.76% (certified as 16.3%). The work provides new insights for understanding the structure-property relationship of polymer acceptors and paves a feasible avenue to develop efficient conjugated polymer acceptors.