Login / Signup

Bioinformatic Identification of Peptidomimetic-Based Inhibitors against Plasmodium falciparum Antigen AMA1.

Asrar Alam
Published in: Malaria research and treatment (2014)
Plasmodium falciparum apical membrane antigen 1 (PfAMA1) is a valuable vaccine candidate and exported on the merozoite surface at the time of erythrocyte invasion. PfAMA1 interacts with rhoptry neck protein PfRON2, a component of the rhoptry protein complex, which forms the tight junction at the time of invasion. Phage display studies have identified a 15-residue (F1) and a 20-residue (R1) peptide that bind to PfAMA1 and block the invasion of erythrocytes. Cocrystal structures of central region of PfAMA1 containing disulfide-linked clusters (domains I and II) with R1 peptide and a peptide derived from PfRON2 showed strong structural similarity in binding. The peptides bound to a hydrophobic groove surrounded by domain I and II loops. In this study, peptidomimetics based on the crucial PfAMA1-binding residues of PfRON2 peptide have been identified. Top 5 peptidomimetics when checked for their docking on the region of PfAMA1 encompassing the hydrophobic groove were found to dock on the groove. Drug-like molecules having structural similarity to the top 5 peptidomimetics were identified based on their binding ability to PfAMA1 hydrophobic groove in blind docking. These inhibitors provide potential lead compounds, which could be used in the development of antimalarials targeting PfAMA1.
Keyphrases
  • plasmodium falciparum
  • protein protein
  • binding protein
  • cell migration
  • ionic liquid
  • molecular dynamics
  • molecular dynamics simulations
  • blood brain barrier