Light is one of the most important environmental factors that affects various cellular processes in plant growth and development; it is also crucial for the metabolism of carbohydrates as it provides the energy source for photosynthesis. Under extended darkness conditions, carbon starvation responses are triggered by depletion of stored energy. Although light rapidly inhibits starvation responses, the molecular mechanisms by which light signalling affects this process remain largely unknown. In this study, we showed that the Arabidopsis thaliana light signalling protein FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its homolog FAR-RED IMPAIRED RESPONSE1 (FAR1) are essential for plant survival after extended darkness treatment at both seedling and adult stages. Transmission electron microscopy analyses revealed that disruption of both FHY3 and FAR1 resulted in destruction of chloroplast envelopes and thylakoid membranes under extended darkness conditions. Furthermore, treatment with sucrose, but not glucose, completely rescued carbon starvation-induced cell death in the rosette leaves and arrested early seedling establishment in the fhy3 far1 plants. We thus concluded that the light signalling proteins FHY3 and FAR1 negatively regulate carbon starvation responses in Arabidopsis.