Login / Signup

Catalytic/magnetic assemblies of rolled-up tubular nanomembrane-based micromotors.

Sumayyah NaeemJawayria MujtabaFarah NaeemKailiang XuGaoshan HuangAlexander A SolovevJing ZhangYongFeng Mei
Published in: RSC advances (2020)
Nano/-micromotors self-assembling into static and dynamic clusters are of considerable promise to study smart, interactive, responsive, and adaptive nano/-micromaterials that can mimic spatio-temporal patterns, swarming, and collective behaviors widely observed in nature. Previously, the dynamic self-assembly of bubble-propelled catalytic micromotors initiated by capillary forces has been reported. This manuscript shows novel self-assembly modes of magnetic/catalytic Ti/FeNi/Pt tubular micromotors. When chemical fuel (hydrogen peroxide) is added it is decomposed on contact with Pt catalyst into oxygen and water. Here, the non-bubbling motion and autonomous assembly of catalytic/magnetic nanomembranes, i.e. without nucleation/generation of oxygen bubbles, are shown. Moreover, magnetic Ti/FeNi/Pt micromotors are spun using an external magnetic field and they form dynamic clusters balanced by attractive magnetic and repulsive hydrodynamic interactions. Micromotors form dynamic clusters, undergo precession and rapidly propagate through the solution.
Keyphrases
  • molecularly imprinted
  • hydrogen peroxide
  • nitric oxide
  • crystal structure
  • cancer therapy
  • big data
  • high glucose
  • endothelial cells
  • artificial intelligence
  • ionic liquid
  • highly efficient