Large-scale label-free single-cell analysis of paramylon in Euglena gracilis by high-throughput broadband Raman flow cytometry.
Kotaro HiramatsuKoji YamadaMatthew LindleyKengo SuzukiKeisuke GodaPublished in: Biomedical optics express (2020)
Microalga-based biomaterial production has attracted attention as a new source of drugs, foods, and biofuels. For enhancing the production efficiency, it is essential to understand its differences between heterogeneous microalgal subpopulations. However, existing techniques are not adequate to address the need due to the lack of single-cell resolution or the inability to perform large-scale analysis and detect small molecules. Here we demonstrated large-scale single-cell analysis of Euglena gracilis (a unicellular microalgal species that produces paramylon as a potential drug for HIV and colon cancer) with our recently developed high-throughput broadband Raman flow cytometer at a throughput of >1,000 cells/s. Specifically, we characterized the intracellular content of paramylon from single-cell Raman spectra of 10,000 E. gracilis cells cultured under five different conditions and found that paramylon contents in E. gracilis cells cultured in an identical condition is given by a log-normal distribution, which is a good model for describing the number of chemicals in a reaction network. The capability of characterizing distribution functions in a label-free manner is an important basis for isolating specific cell populations for synthetic biology via directed evolution based on the intracellular content of metabolites.