Simultaneous two-color X-ray absorption spectroscopy using Laue crystals at an inverse-compton scattering X-ray facility.
Juanjuan HuangBenedikt GüntherKlaus AchterholdMartin DierolfFranz PfeifferPublished in: Journal of synchrotron radiation (2021)
X-ray absorption spectroscopy (XAS) is an element-selective technique that provides electronic and structural information of materials and reveals the essential mechanisms of the reactions involved. However, the technique is typically conducted at synchrotrons and usually only probes one element at a time. In this paper, a simultaneous two-color XAS setup at a laboratory-scale synchrotron facility is proposed based on inverse Compton scattering (ICS) at the Munich Compact Light Source (MuCLS), which is based on inverse Compton scattering (ICS). The setup utilizes two silicon crystals in a Laue geometry. A proof-of-principle experiment is presented where both silver (Ag) and palladium (Pd) K-edge X-ray absorption near-edge structure spectra were simultaneously measured. The simplicity of the setup facilitates its migration to other ICS facilities or maybe to other X-ray sources (e.g. a bending-magnet beamline). Such a setup has the potential to study reaction mechanisms and synergistic effects of chemical systems containing multiple elements of interest, such as a bimetallic catalyst system.
Keyphrases
- high resolution
- dual energy
- single molecule
- room temperature
- computed tomography
- gold nanoparticles
- healthcare
- mass spectrometry
- small molecule
- reduced graphene oxide
- magnetic resonance imaging
- quantum dots
- risk assessment
- fluorescence imaging
- health information
- cancer therapy
- molecular dynamics
- contrast enhanced
- solid state
- visible light