Login / Signup

Biodegradation of organic compounds in the coal gangue by Bacillus sp. into humic acid.

Chenxu LiuShuhua MaXiaohui WangYanjun OuHao Du
Published in: Biodegradation (2023)
Coal gangue (CG), one of the world's largest industrial solid wastes produced during coal mining, is extremely difficult to be used owing to its combined contents of clay minerals and organic macromolecules. This study explored a novel process of degrading the harmful organic compounds in the CG into humic acid using a biological method characterized by scanning electron microscope-energy dispersive spectrometer, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and elemental analyzer. The results reveal that adding selected Bacillus sp. to the CG for 40 days can increase the humic acid content by ~ 17 times, reaching 17338.17 mg/kg, which is also the best level for promoting plant growth. FTIR and XPS spectra show that the organic compounds in the CG transforms primarily from C=C to C=O, COOH, and O-H groups, indicating that the organic compounds are gradually oxidized and activated, improving the humic acid concentration of soil. In addition, Bacillus sp. decreases pH and benzo[a]pyrene contents, and increases the content of available nutrients. After microbial degradation, coal gangue can be turned into ecological restoration materials.
Keyphrases