Login / Signup

Synthesis of cross-linked poly(acrylic acid) nanogels in an aqueous environment using precipitation polymerization: unusually high volume change.

Marcin MackiewiczZbigniew StojekMarcin Karbarz
Published in: Royal Society open science (2019)
For the first time, by using precipitation polymerization in an aqueous solution, a cross-linked poly(acrylic acid)-(pAA) nanogel was synthesized. pAA was synthesized and cross-linked with N,N'-methylenebisacrylamide (BIS) at 70°C in an acidified environment (pH 2) and containing 0.7 M NaCl using potassium persulfate as the initiator. Ionized pAA was soluble in water. The use of sodium chloride at low pH caused a decrease in the solubility of pAA and led to its precipitation and formation of cross-linked pAA nanogel. By using electron microscopies and light scattering techniques, the morphology, pH sensitivity and zeta potential of the obtained p(AA-BIS) nanogel were evaluated. The polymerization in an aqueous environment resulted in a very big swelling/shrinking coefficient (of approx. 4000) in response to pH and exhibited an unusually high negative zeta potential (of approx. -130 mV). These properties make the nanogel a very interesting sorbent and a construction material.
Keyphrases
  • ionic liquid
  • aqueous solution
  • human health
  • risk assessment
  • machine learning
  • climate change
  • molecularly imprinted