Login / Signup

MYB transcription factors GmMYBA2 and GmMYBR function in a feedback loop to control pigmentation of seed coat in soybean.

Ruifang GaoTaotao HanHongwei XunXiangsheng ZengPenghui LiYueqing LiYanan WangYan ShaoXin ChengXianzhong FengJian ZhaoLi WangXiang Gao
Published in: Journal of experimental botany (2021)
Soybean has undergone extensive selection pressures for seed nutrient composition and seed color during domestication, but the major genetic loci controlling seed coat color have not been completely understood, and the transcriptional regulation relationship among the loci remains elusive. Here, two major regulators, GmMYBA2 and GmMYBR, were functionally characterized as an anthocyanin activator and repressor, respectively. Ectopic expression of GmMYBA2 in soybean hairy roots conferred the enhanced accumulation of delphinidin and cyanidin types of anthocyanins in W1t and w1T backgrounds, respectively, through activating anthocyanin biosynthetic genes in the reported loci. The seed coat pigmentation of GmMYBA2-overexpressing transgenic plants in the W1 background mimicked the imperfect black phenotype (W1/w1, i, R, t), suggesting that GmMYBA2 was responsible for the R locus. Molecular and biochemical analysis showed that GmMYBA2 interacted with GmTT8a to directly activate anthocyanin biosynthetic genes. GmMYBA2 and GmMYBR might form a feedback loop to fine-tune seed coat coloration, which was confirmed in transgenic soybeans. Both GmTT8a and GmMYBR that were activated by GmMYBA2 in turn enhanced and obstructed the formation of the GmMYBA2-GmTT8a module, respectively. The results revealed the sophisticated regulatory network underlying the soybean seed coat pigmentation loci and shed light on the understanding of the seed coat coloration and other seed inclusions.
Keyphrases