The Impact of Social Disparities on Microbiological Quality of Drinking Water Supply in Ugu District Municipality of Kwazulu-Natal Province, South Africa.
C M N Khabo-MmekoaMaggy Ndombo Benteke MombaPublished in: International journal of environmental research and public health (2019)
This study was undertaken to highlight the social disparity between rural and urban areas in terms of housing patterns, provision of safe drinking water, access to sanitation facilities, education, employment rate and health-related to diarrhoeal episodes in Ugu District Municipality of KwaZulu-Natal Province of South Africa. To achieve this aim, a survey was conducted using a structured questionnaire. Drinking water samples were collected from the point of supply and the storage containers to assess the microbiological quality of drinking water in both rural and urban areas. Results of this study revealed prominent residential segregation between rural and urban communities, whereby the houses in the rural areas were generally constructed with corrugated iron sheets, or mud brick and mortar whereas conventional brick-and-mortar construction was used to build those in the urban areas. All of the urban households had flush toilets in their houses (100%), while 98.2% of the rural households were relying on pit latrines and 1.8% were reported to defecate in an open field. The District unemployment rate was at 58.1% in rural areas and none among the urban community. Results also showed that only 13.6% of the rural dwellers completed their secondary education compared to 70.4% of the urban areas. The diarrhoeal episodes were high in rural areas (34.1%) while none of these episodes was reported in urban areas. Great disparity in the water supply persists between rural and urban communities. For the former, the standpipes located outside their homes (90.9%) remain the sole mode of access to drinking water, while in the urban area, all households had pipes/taps inside their houses. Assessment of the drinking water quality revealed only the stored drinking water used by the rural community of Ugu District was contaminated. High prevalence of E. coli ranging from 63.3 % to 66.7% was recorded only in stored water after the sequencing of 16S rRNA genes. Species-specific PCR primers exposed the presence of enteropathogenic Escherichia coli at a rate ranging between 1.4% and 3.7% in this water Overall, this study has been able to highlight the disparity left by the legacy of racial segregation in the Ugu Municipality District. Therefore, the local government must intervene in educating homeowners on safe water storage practices.