Low-Voltage Surface Electrocoalescence Enabled by High-K Dielectrics and Surfactant Bilayers for Oil-Water Separation.
Ingrid F GuhaKripa K VaranasiPublished in: ACS applied materials & interfaces (2019)
Processes for separating oil-water mixtures are critical to operations in energy and water. However, existing separation methods pose efficiency limitations as well as environmental and safety challenges. Here, we present a low-voltage surface electrocoalescence approach that triggers coalescence of surfactant-stabilized emulsions by combining high-K dielectrics with surfactant bilayers. In this system, the high-K dielectric reduces the electrocoalescence voltage, while the surfactant bilayer functions as a self-healing, high capacitance film that prevents pinning of droplets on the dielectric surface. This high capacitance system maximizes the electric field between neighboring droplets, exerting high electrostatic pressure that overcomes the disjoining pressure between droplets, thereby enabling rapid electrocoalescence. We demonstrate electrocoalescence of surfactant-stabilized microscale droplets of saline water in oil using single volts. We expect our results may find application in the energy sector, wastewater treatment, and purification industries.