Uncertainty in the equilibrium climate sensitivity (ECS) of the Earth continues to be large. Aspects of the cloud feedback problem have been identified as fundamental to the uncertainty in ECS. Recent analyses have shown that changes to cloud forcing with climate change can be decomposed into contributions from changes in cloud occurrence that are proportional to globally averaged temperature change and changes associated with rapid adjustments in the system that are independent of changes to globally averaged surface temperature. Together these responses enhance warming due to (1) cloud feedback from increasing cloud altitude by upper tropospheric clouds and (2) decreases in cloud coverage by marine boundary layer clouds. We argue that active remote sensing from space can play a unique and crucial role in constraining our understanding of these separate phenomena. For 1, the feedback associated with changing tropical cirrus is predicted to emerge from the statistical noise of the climate system within the next one to two decades. However, active remote sensing will need to continue for that signal to be observed since accurate placement of these clouds in the vertical dimension is necessary. For 2, the processes associated with changes to marine boundary layer clouds have been linked to the coupling between cloud and precipitation microphysics and air motions over remote ocean basins where precipitation formation in shallow convection is modulated by changes to aerosols and thermodynamics. Exploiting the synergy in combined active and passive remote sensing is likely one of the only ways of constraining our evolving theoretical understanding of low-level cloud processes as represented in cloud-resolving models and for validating global-scale models.