Login / Signup

Role of Protein Phosphatase1 Regulatory Subunit3 in Mediating the Abscisic Acid Response.

Jing ZhangQianqian QinXiaohui NanZilong GuoYang LiuSawaira JadoonYan ChenLulu ZhaoLongfeng YanSuiwen Hou
Published in: Plant physiology (2020)
Protein phosphatase1 (PP1) plays important roles in eukaryotes, including in plant hormone responses, and functions as a holoenzyme that consists of catalytic and regulatory subunits. Animal genomes encode ∼200 PP1-interacting proteins; by contrast, only a few have been reported in plants. In this study, PP1 Regulatory Subunit3 (PP1R3), a protein that interacts with PP1 in Arabidopsis (Arabidopsis thaliana), was characterized by mass spectrometry. PP1R3 was widely expressed in various plant tissues and PP1R3 colocalized with Type One Protein Phosphatases (TOPPs) in the nucleus and cytoplasm. The pp1r3 mutants were hypersensitive to abscisic acid (ABA), similar to the dominant-negative mutant topp4-1 or the loss-of-function multiple mutants topp1 topp4-3, topp8 topp9, topp6/7/9, topp1/2/4-3/6/7/9, and topp1/4-3/5/6/7/8/9 (topp-7m). About two-thirds of differentially expressed genes in topp-7m showed the same gene expression changes as in pp1r3-2 In response to ABA, the phenotypes of pp1r3 topp1 topp4-3 and pp1r3 topp4-1 were consistent with those of pp1r3, while pp1r3 abi1-1 showed an additive effect of the pp1r3 and abi1-1 (mutation in Abscisic Acid Insensitive1 [ABI1]) single mutants. Moreover, pp1r3 could partially recover the ABA response-related phenotype, gene expression, and plant morphology of topp4-1 PP1R3 inhibited TOPP enzyme activity and facilitated the nuclear localization of TOPP4. By contrast, ABA treatment increased the amounts of TOPP1 and TOPP4 in the cytoplasm. Importantly, nuclear localization of TOPP4 partially restored the ABA-hypersensitive phenotype of topp4-1 Overall, our results suggest that the PP1R3:TOPP holoenzyme functions in parallel with ABI1 in the nucleus to regulate ABA signaling.
Keyphrases