Login / Signup

Illuminating subduction zone rheological properties in the wake of a giant earthquake.

Jonathan R WeissQiang QiuSylvain BarbotTim J WrightJames H FosterAlexander SaundersBenjamin A BrooksMichael BevisEric KendrickTodd L EricksenJonathan AveryRobert SmalleySergio R CimbaroLuis E LenzanoJorge BarónJuan Carlos BáezArturo Echalar
Published in: Science advances (2019)
Deformation associated with plate convergence at subduction zones is accommodated by a complex system involving fault slip and viscoelastic flow. These processes have proven difficult to disentangle. The 2010 M w 8.8 Maule earthquake occurred close to the Chilean coast within a dense network of continuously recording Global Positioning System stations, which provide a comprehensive history of surface strain. We use these data to assemble a detailed picture of a structurally controlled megathrust fault frictional patchwork and the three-dimensional rheological and time-dependent viscosity structure of the lower crust and upper mantle, all of which control the relative importance of afterslip and viscoelastic relaxation during postseismic deformation. These results enhance our understanding of subduction dynamics including the interplay of localized and distributed deformation during the subduction zone earthquake cycle.
Keyphrases
  • atomic force microscopy
  • neural network
  • electronic health record
  • big data
  • single molecule
  • high resolution
  • rare case