Login / Signup

Microbial Chain Elongation and Subsequent Fermentation of Elongated Carboxylates as H2-Producing Processes for Sustained Reductive Dechlorination of Chlorinated Ethenes.

Aide RoblesTheodora L YellowmanSayalee JoshiSrivatsan Mohana RanganAnca G Delgado
Published in: Environmental science & technology (2021)
In situ anaerobic groundwater bioremediation of trichloroethene (TCE) to nontoxic ethene is contingent on organohalide-respiring Dehalococcoidia, the most common strictly hydrogenotrophic Dehalococcoides mccartyi (D. mccartyi). The H2 requirement for D. mccartyi is fulfilled by adding various organic substrates (e.g., lactate, emulsified vegetable oil, and glucose/molasses), which require fermenting microorganisms to convert them to H2. The net flux of H2 is a crucial controlling parameter in the efficacy of bioremediation. H2 consumption by competing microorganisms (e.g., methanogens and homoacetogens) can diminish the rates of reductive dechlorination or stall the process altogether. Furthermore, some fermentation pathways do not produce H2 or having H2 as a product is not always thermodynamically favorable under environmental conditions. Here, we report on a novel application of microbial chain elongation as a H2-producing process for reductive dechlorination. In soil microcosms bioaugmented with dechlorinating and chain-elongating enrichment cultures, near stoichiometric conversion of TCE (0.07 ± 0.01, 0.60 ± 0.03, and 1.50 ± 0.20 mmol L-1 added sequentially) to ethene was achieved when initially stimulated by chain elongation of acetate and ethanol. Chain elongation initiated reductive dechlorination by liberating H2 in the conversion of acetate and ethanol to butyrate and caproate. Syntrophic fermentation of butyrate, a chain-elongation product, to H2 and acetate further sustained the reductive dechlorination activity. Methanogenesis was limited during TCE dechlorination in soil microcosms and absent in transfer cultures fed with chain-elongation substrates. This study provides critical fundamental knowledge toward the feasibility of chlorinated solvent bioremediation based on microbial chain elongation.
Keyphrases
  • microbial community
  • blood pressure
  • risk assessment
  • skeletal muscle
  • heavy metals
  • adipose tissue
  • wastewater treatment
  • high resolution
  • human health
  • mass spectrometry
  • climate change
  • health risk assessment
  • cell wall