Login / Signup

Biomimetic 3D Environment Based on Microgels as a Model for the Generation of Drug Resistance in Multiple Myeloma.

Juan Carlos Marín-PayáBlanca Díaz-BenitoLuis Amaro MartinsSandra Clara TrujilloLourdes CordonSenendxu Lanceiros-MéndezGloria Gallego-FerrerAmparo SempereJosé Luis Gómez Ribelles
Published in: Materials (Basel, Switzerland) (2021)
The development of three-dimensional environments to mimic the in vivo cellular response is a problem in the building of disease models. This study aimed to synthesize and validate three-dimensional support for culturing monoclonal plasma cells (mPCs) as a disease model for multiple myeloma. The three-dimensional environment is a biomimetic microgel formed by alginate microspheres and produced on a microfluidic device whose surface has been functionalized by a layer-by-layer process with components of the bone marrow's extracellular matrix, which will interact with mPC. As a proof of concept, RPMI 8226 cell line cells were cultured in our 3D culture platform. We proved that hyaluronic acid significantly increased cell proliferation and corroborated its role in inducing resistance to dexamethasone. Despite collagen type I having no effect on proliferation, it generated significant resistance to dexamethasone. Additionally, it was evidenced that both biomolecules were unable to induce resistance to bortezomib. These results validate the functionalized microgels as a 3D culture system that emulates the interaction between tumoral cells and the bone marrow extracellular matrix. This 3D environment could be a valuable culture system to test antitumoral drugs efficiency in multiple myeloma.
Keyphrases