Login / Signup

Establishing an Electrostatics Paradigm for Membrane Electroporation in the Framework of Dissipative Particle Dynamics.

Rakesh VaiwalaSameer JadhavRochish M Thaokar
Published in: Journal of chemical theory and computation (2019)
With an exclusive aim to looking into a mechanism of membrane electroporation on mesoscopic length and time scales, we report the dissipative particle dynamics (DPD) simulation results for systems with and without electrolytes. A polarizable DPD model of water is employed for accurate modeling of long-range electrostatics near the water-lipid interfaces. A great deal of discussion on field induced change in dipole moments of water and lipids together with the special variation of electric field is made in order to understand the dielectrophoretic movement of water, initiating a pore formation via an intrusion through the bilayer core. The presence of salt alters the dipolar arrangement of lipids and water, and thereby it reduces the external field required to create a pore in the membrane. The species fluxes through the pore, distributions for bead density, electrostatic potential, stresses across the membrane, etc. are used to answer some of the key questions pertaining to mechanism of electroporation. The findings are compared with the molecular dynamics simulation results found in the literature, and the comparison successfully establishes an electrostatics paradigm for biomembrane studies using DPD simulations.
Keyphrases
  • molecular dynamics simulations
  • molecular docking
  • oxidative stress
  • risk assessment