Gas Phase Organic Functionalization of SiO2 with Propanoyl Chloride.
Ryan J GasvodaScott WangDennis M HausmannEric A HudsonSumit AgarwalPublished in: Langmuir : the ACS journal of surfaces and colloids (2018)
The reaction mechanism of propanoyl chloride (C2H5COCl) with -SiOH-terminated SiO2 films was studied using in situ surface infrared spectroscopy. We show that this surface functionalization reaction is temperature dependent. At 230 °C, C2H5COCl reacts with isolated surface -SiOH groups to form the expected ester linkage. Surprisingly, as the temperature is lowered to 70 °C, the ketone groups are transformed into the enol tautomer, but if the temperature is increased back to the starting exposure temperature of 230 °C, the ketone tautomer is not recovered, indicating that the enol form is thermally stable over a wide range of temperatures. Further, the enol form is directly formed after exposure of a SiO2 surface to C2H5COCl at 70 °C. We speculate that the enol form, which is energetically unfavorable, is stabilized because of hydrogen bonding with adjacent enol groups or through hydrogen bonding with unreacted surface -SiOH groups. The surface coverage of hydrocarbon molecules is calculated as ∼6 × 1012 cm-2, assuming each reacted -SiOH group contributes to one hydrocarbon linkage on the surface. At a substrate temperature of 70 °C, the enol form is unreactive with H2O, and H2O molecules simply physisorb on the surface. At higher temperatures, H2O converts the ketone to the enol tautomer and reacts with Si-O-Si bridges, forming more -SiOH reactive sites. The overall hydrocarbon coverage on the surface can then be further increased through cycling H2O and C2H5COCl doses.