Login / Signup

Framework Nucleic Acid-Enabled Programming of Electrochemical Catalytic Properties of Artificial Enzymes.

Dongdong ZengLili SanFengyu QianZhilei GeXiaohui XuBin WangQian LiGuifang HeXianqiang Mi
Published in: ACS applied materials & interfaces (2019)
The creation and engineering of artificial enzymes remain a challenge, especially the arrangement of enzymes into geometric patterns with nanometer precision. In this work, we fabricated a series of novel DNA-tetrahedron-scaffolded-DNAzymes (Tetrazymes) and evaluated the catalytic activity of these Tetrazymes by electrochemistry. Tetrazymes were constructed by precisely positioning G-quadruplex on different sites of a DNA tetrahedral framework, with hemin employed as the co-catalyst. Immobilization of Tetrazymes on a gold electrode surface revealed horseradish peroxidase (HPR)-mimicking bioelectrocatalytic property. Cyclic voltammogram and amperometry were employed to evaluate the capability of Tetrazymes of different configurations to electrocatalyze the reduction of hydrogen peroxide (H2O2). These artificial Tetrazymes displayed 6- to 14-fold higher enzymatic activity than G-quadruplex/hemin (G4-hemin) without the DNA tetrahedron scaffold, demonstrating application potential in developing novel G-quadruplex-based electrochemical sensors.
Keyphrases