Login / Signup

Negative Differential Resistance in Conical Nanopore Iontronic Memristors.

Ruoyu YangYusuff BalogunSarah AkeDipak BaramWarren BrownGangli Wang
Published in: Journal of the American Chemical Society (2024)
Emerging ion transport dynamics with memory effects at nanoscale solution-substrate interfaces offers a unique opportunity to overcome the bottlenecks in traditional computational architectures, trade-offs in selectivity and throughput in separation, and electrochemical energy conversions. Negative differential resistance (NDR), a decrease in conductance with increasing potential, constitutes a new function from the perspective of time-dependent instead of steady-state nanoscale electrokinetic ion transport but remains unexplored in ionotronics to develop higher-order complexity and advanced capabilities. Herein, NDR is introduced in hysteretic and rectified ion transport through single conical nanopipettes (NPs) as ionic memristors. Deterministic and chaotic behaviors are controlled via an electric field as the sole stimulus. The NDR arises fundamentally from the availability and redistribution of the ionic charges during the hysteretic and rectified transport at asymmetric nanointerfaces. The elucidated mechanism is generalizable, and the drastically simplified operations enable tunable state-switching dynamics with higher-order complexity besides the first-order synaptic functions in multiple excitatory and inhibitory states.
Keyphrases
  • solid state
  • ionic liquid
  • gold nanoparticles
  • human health
  • amino acid