Surface Zeta Potential of ALD-Grown Metal-Oxide Films.
Zijing XiaVepa RozyyevAnil U ManeJeffrey W ElamSeth B DarlingPublished in: Langmuir : the ACS journal of surfaces and colloids (2021)
Membranes are among the most promising technologies for energy-efficient and highly selective separations, and the surface-charge property of membranes plays a critical role in their broad applications. Atomic layer deposition (ALD) can deposit materials uniformly and with high precision and controllability on arbitrarily complex and large substrates, which renders it a promising method to tune the electrostatics of water/solid interfaces. However, a systematic study of surface-charge properties of ALD-grown films in aqueous environments is still lacking. In this work, 17 ALD-grown metal-oxide films are synthesized, and a comprehensive study of their water stability, wetting properties, and surface-charge properties is provided. This work represents a resource guide for researchers and ultimately for materials and process engineers, seeking to tailor interfacial charge properties of membranes and other porous water treatment components.