Login / Signup

The Thiouronium Group for Ultrastrong Pairing Interactions between Polyelectrolytes.

Sandrine LteifSamir Abou ShaheenJoseph B Schlenoff
Published in: The journal of physical chemistry. B (2020)
Various charged groups may be used as a repeat unit in polyelectrolytes to provide physical interactions between oppositely charged polymers leading to phase separation. The materials formed thus are termed polyelectrolyte complexes or coacervates (PECs). The strength of pairing between positive, Pol+, and negative, Pol-, repeat units depends on the specific identity of the monomer repeat unit. In this work, the pairing strength of the thiouronium group, a cation closely related to guanidinium, is evaluated using a polythiouronium polyelectrolyte. Polymers containing guanidinium, notably polyarginine, a peptide, are known for their unusual behavior, such as the formation of like-charge ion pairs and hydrogen bonding. It is shown here that some of this behavior is carried over to polythiouroniums, which results in exceptionally strong interactions with polyanions such as polysulfonates and polycarboxylates. The resilience of the polythiouronium/Pol- interaction was evaluated using the buildup of polyelectrolyte multilayers at various salt concentrations and by breaking up preformed PECs with high concentrations of added salt. The thiouronium group even interacts strongly enough with polymeric zwitterions to enable complexation with this nominally weakly interacting, net-neutral polymer.
Keyphrases
  • drug delivery
  • mental health
  • climate change
  • depressive symptoms
  • drug release
  • drug induced