Chromic and Fluorescence-Responsive Metal-Organic Frameworks Afforded by N-Amination Modification.
Xiao-Yan LiuXue-Mei YinShuai-Liang YangLin ZhangRan BuEn-Qing GaoPublished in: ACS applied materials & interfaces (2021)
Sensory materials that show color and/or fluorescence changes in response to specific gases or vapors have important applications in many fields. Here, we report the postsynthetic preparation of novel sensory metal-organic frameworks (MOFs) and their multiple responsive properties. Through postsynthetic N-amination, the 2,2'-bipyridyl spacers in a Zr(IV) MOF are partially transformed into N-aminobipyridinium. The new MOF (Zr-bpy-A) shows chromic behavior toward ammonia and amines because the electron-deficient pyridinium groups form charge-transfer complexes with amino moieties. It also shows a unique chromic response to formaldehyde owing to the Schiff-base condensation with the N-amino groups. Furthermore, the N-amino group can be used to graft different polycyclic aromatic hydrocarbons, which endow the MOF with strong fluorescence of variable colors and afford a high-contrast fluorescence response to ammonia/amines and formaldehyde associated with the chromic response. The presence of the unquaternized bipyridyl group also leads to a fluorescence response to HCl. The multiple responsive behaviors hold appeal for applications in sensing, switching, and antifake marking, which are illustrated with a test paper and writing ink.